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ABSTRACT: Information exchange theory aiis at the study and model-

ing of information exchange processes among interacting agents. In
this paper, we develop a model for information exchange. The con-

cepts of protocols, types of information systetqs, misinformation

and information distortion, codification, and information distance

are introduced. Examples of information exchange processes are

given. In the appendix, a model for competitive information ex-

change is presented. The estimation of alien models for this com-

petitive infonvtion exchange model is described.
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1. Introduction

Information ex':hange theory aims at the study and modeling of

information exchange processes among interacting agents. An agent can

acquire knowledge about tLhe ,il stie world in two ways: (a) engagement

in direct action, and (b) exchange of hiForititon with other agents.

Engagement in direct action is the pr',iary ,ioans of acquiring

knowledge, whereby experiences are acquired and accumulated. Experi-

ences, as primary source of knowledge, are distilled and abstracted to

construct a knowledge base - understanding of the outside world. This

knowledge acquisition process is feasible only for those ;t ots capa-

ble of engagement in direct action.

However, not all agents ar,! cipai. ,I' k:awledge acquisition via

direct action. The second knowledge acquisition process is through

exchange of inforiation with other agents.

As illviifr.,i.l ri Figure 1, in the knowledge acquisition process,

experiences arc i'!;tracted to construct a knowledge base. This

abstracted information representation in the knowledge base has

several advantages over raw experiences: (a) economy of representa-

tion; (b) expressiveness; and (c) efficiency in knowledge transmis-

sion. By communicating with other agents using this abstra'ted infor-

mation representation, other agoeL tits ) nt have tO rely otipn direct

action in order to acquire knowledge.

The process of informatlon exchange can be seen to be ain indirect

(and oft:eri more efficient) way of constructing a knowledge base about

the outside world. As illustrated in Figure 2, each agent has its own

knowledge base and experiences pool. Information exchange can be seen



to be a replacement and/or supplement to direct action in the real

world.

In this paper, we d*-vclop a model for information exchange. In

Section 2, the basic concepts of informatioti eychange theory are in-

troduced. Protocols, types of informationl -yitins, misinformation and

information distortion, codificati(,ri prmes,, and inforn,ation dis-

tance, are discussed in Sections 3, 4, 5, 6 an l 7, r-,;,yctively.

Examples of information exchange processes are given in Section 8.

The appendix describes a model for competitive information ex-

change. The estimation of alien-models for this competitive informa-

tion ext'ivioge :iodel is described in Section A2 and A3. Section A4

introduct-,; rior.- ,onplicated models. Finally, in Section A5, n-agent

message exc1hange is discussed.

This paper is the first part of three papers on infornation ex-

change theory. The second part discusses the analysis and synthesis

of information exchange protocols. The third part deals with the

application of 51,f,,lt:Ton exchange theory to the design of message

filters, and the specification and decomposition of user models.



2. Basic Concepts

The basic vo'l1!pi-s of information exchange theory will now be

introduced to characterize the information exchange process. A formal

model is presented at the end of this sectLon.

We define an agent as some active process (a persoit, a computer

program, an organization, etc.), which is capable of manipulating data

and assuming different states. In the above, agent, data., and state

are primitive concepLs. lhn define information as data which, when

manipulated by an agent, enables the agent to assume or change states.

The process of ir,forri.ition exchange between two agents is called

a conversation or interaction. The unit of infonirt1 , :,hange is

called a message. The basic dyadic conversational model is illustrat-

ed in Figure 3 (Note 1). In Figure 3, each agent has access to a data

base. Each agent also has a model of itself, called the self-model,

and a model of the other agent, called the ilterl-model. The model of

the alien agent may range from beln vrv precise to raither vague

(closely coupled to loosely coupled). The coi'c., ol v alien-model

in information exchange theory is important. Tlii .oj ..rl--modeL enables

one agent to couple its information gathering and processing activi-

ties with another agent's corresponding, activities. The coupling pro-

cess is called association, which enables the two communicating agents

to share their experiences and achieve synergy (":,t 2).

If the (self-model, alien--model) pair of two commnnicahitg agents

become reciprocally identical after they have correctly estimated the

respective alien-models, then the dyadic system is said to have

achieved synergy or resonance.



The function of O .. *iioder is to encode messages for transmis-

sion via a communication channel, and that of the decoder is to decode

the transmitted messages. Sometimes the encoaer is used to transmit

misinformation, and the decoder is then used to detect the truim-iits-

sion of misinformation. The usage of misinformation will be disc.s-sed

in Section 5.

An information node consists of an agent (with its data base,

self-model, alien-model, encoder and decoder) and communication chan-

nels to other information nodes. An informatimi system is a network

of interconnected information nodes allowing information exchange

among interacting g,,-s.

We now present a formal definition of an agent as follows.

DEFINITION I: An agent M is a 9-tuple (X,S,g,h, so, F, E, D, DB),

where

X is a nonempty set of messages (the message space)
S is a nonempty set of states (the state space), S = Sr x YR x Ya, and

Sr is a nonempty set of true states of agent
Ys is a nonempty set of self-models
Ya is a nonempty set of alien-models

g: Sr x (X x X)* -> Sr is the true state transition function
(given current true state and history of input/output mess;age

exchanges, g specifies the nexf. t rue state)
h : S x (X x X)* --> S is the state transition function

(given curreni ,.Lt , hi story of input/output message exchanges,
h specifies the next state)

so in S is the initial state
F is a subset of S, the final states
E : S x X --' X is I l( , roler which maps true

output message to external output message
D : S x X .-> X is the decoder which maps external

inpitt message to true input message
T), 1; ! La base which stores history of input/output message

exchange, DB is a subset of (X x X)*

As a convention, the message space X contains a nul I '_-L, e,

so that an agent can send out messages spontaneously, or receive



messages without having to send an immediate response. Thus (xi, e)

indicates M receives a message xi, (e, xj) indicates H sends out a

message xj, and (xi, xj) indicates M sends out a message Xj after hav-

ing received message xi.

The true state transition function g can be derivd l, 1, I1,

,;rate transition function h as follows, l(3,1)(h((wi,wj),s,ysya)) =

g((wi,wj),s) for any (wi,wj) in (X x X)*, s in Sr, ys in Ys, and ya in

Ya, where 1(3,1) denotes the projection of a 3-dimensional space onto

its first coordiii. ,. Tils also implies that h must he consistent, in

the sense that for my ys In Ys and ya in Ya,

I(3,1)(h((wi,wj),s,ys,ya) are identical.

Let wi, w2 he arbitrary message strings in (X x X)*. If h(so,wl)

= sl and h(so,wlw2) = s2 implies h(sl,w2) = s2 for any wl and w2, then

the state transition function ii ,-,i 1)o .!,,Lned as a function from S x

X x X into S, i.e., the next state depends only on the current state

and the immediate message exchange.

The set of self--modelt, VY., c -an he defined as the power set of
Sr

Sr, or 2 . Similarly, the set of alien-models, Ya, can be defined as
Sr'

the power set of Sr', or 2 , where Sr' is tl! -,;i t:ite space of

other agent. In other words, if M is not sure ahbonr its true state,

ys represents the set of states which it thinks contain,s its true

state. Tn general, Ys and Ya can be arbitrary models of 1I.

DEFINITIOlN 2: Given two agents Mi and Hj, let (xil, ... , xiun) denote

the sequence of messages from Mi to Mj, and (xjl, .... xjri) th- se--

q(ience of messages from Mj to Mi. A conversation or interaction is

the combined sequence of messages ((xI1,xjl), .... (xji,xjn)) . A



protocol is the set of rules governing a conversation, during which Mi

and Mj attempt to estimate self-model and al i ml nodel. If after pro-

tocol exchange, Ili is in state (si,{si},(sj}) and Hij is in state

(sj,{sj},{si}), then the two agents have achieved _synergy or

resonance.

I,
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3. Protocols

A set of rules governing a conversation to enable interacting

agents to establish resjw.'tive models of alien agents and to form

association is called a protocol. It should be noted that association

refers to the coupling of models, and protocol is the set of rules

governing message exchanges to form this association. Protocols are

very important in conversation. Quite often, protocol exchanges are

the only type of conversation sustained. Protocn. v.i, ',.! used to

maintain alien-models. Social relationships such as friens1,ip often

need the reinforcement by protocols or ritualistic behavir.

Protocols often can be subdivided into many levels. At each lev-

el, a differviO poir .,' self-model and alien-model is assumed.

Lower-level protocols become building blocks for higher--level proto-

cols. As an example, social protocols are built upon greeting proto-

cols. As another example, in a computer--communication network, one

can identify and define many levels of pr ol, ols, ranging from physi-

cal level, link control level, network control I'.wvfl . 1o uw;.r level

protocols (BACH-M781.

Protocols also change in time, with correspooid, g changes in

alien-models. For example, when two strangers Ftrst meet, they use a

polite greeting protocol. When they become close frieink, the greet-

ing protocol changes accordingly. When they become lovers and finally

husband and wife, greeting protocol changes again.

Different modes of interaction can be studied, by studying the

following: (a) how the alien-models are estimated, i.e., the process

of moo'ml associa ion; (6) hw rif- .(uen-models change in time; and (c)



efficacy and efficiency in informaloln exchange, i.e., the efficacy

and efficiency of obtaining the iiforial ;t, - olicited in an inforna-

tion exchange process.

Agents can be further classified into several types: (a)

Collector, or information sink, which solicits and collects informa-

tion and stores informtni s W ,i data base; (b) Provider, or infor-

mation source, which provides information solicited by other agents;

(c) Analyzer, which processes data stored in its data base to generate

output informatioln; (d) Filter, which condenses and compresses input

infor-tilot to generate output information; (e) Annihilator, which

destroys input information; (f) Creator, which spontaneously creates

information. Agents may assume different roles at different occa-

sions. For example, a public relation person is an Annihilator; a

secretary is a Filter in one role, and a Collector in anothnr r o',;

1,r .iry system serves as a Provider; a company executive is an

Analyzer; ind l artist is a Creator.

Protocols among agents can be classified basedi ,y', i:ieir respec--

tive types into P-->C, A-->C, F-->C, P->A, P->F, P->P, A<-->A, A-->F, and

T.-> protocols.

Civen a protocol exchange (xil, xjl; xi2, xj2; ... ; xin, xjn),

we can investigate how this protocol exchange can be used to estiLmate

the alien-models of interacting agents. It is here assumed that (a)

agents do not change state during protocol exchange, and (h) encoder E

and decod.-r ') ,,rFrm identity mappings.

For any agent M, two true-states sl and 2 arv si .! it) b)

equivalent with respect to a message p.1 v , i , j') , if
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g(sl,(xik,xjk)) = g(s2,(xik,xjk)). This equivalence relation is re-

flexive, transitive, and symmetric. Let A(xik, xjk) denote the set o.f

equivalent true-states of an agent with respect to a message pair

(xik, xjk). Let A denote the intersection of A(xil, xji), ... , A(xin,

xjn), or

A = n A(xik, xjk)

(xik,xjk) is

a message pair
in a protocol

exchange

If A is a singleton set Isn} , th!,! sin ts the true state of an

agent during protocol exchange. If A contains more than one state,

then the protocol exchange can only be used to estinat, It class of

an agent. After protocol exchange, the agent -s il,,lif:tFied to be a

"class A agent". For the other agent, its alien-model ya can he es-

timated as A.

The situation becomes much more complicated, if ag-n i:, chinge

states during protocol exchange, or encoders are used to distort in-

formation. Such topics are of interest for further research.

It should be noted that we do not necessarily need to estimate

the true state of an agent. flFt.e we only need to know what class of

agent it is, i.e. the equivalent states, and information exchange can

begin. A person with great "telephone persoiial ty" can often obtain

useful information over the telephone. The efficacy and efficiency of

information exchange by telephone is also due to the fact that simple

protocols are used in telephone conversation, to construct "crude"

alien-models. On the other hand, only certain informat ion can be

exchanged that way. Further information' . nohange reiiiies better

model associations, i.e., more precise alien-models.
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4. Classification of Infonnation Systems

Information systems can be classified, according to the number of

interacting agents, into three categories: (a) Dyadic systems, with

two interacting agents. The dyadic system is the most basic model of

information exchange. (b) Small group systems, with three to nine

interacting agents. (c) Large group systems, with 'nor, i!)j, .. ,, ; r-

teracting agents.

It 1 rmation systems can also be classified, accord iog Lo the con--

trol structure, into three categories: (a) Tutorial system: One agent

has control and provides information to other agent or agents. Other

agent(s) nay ask questions to obtain answers from the tutoring agent.

The tutoring agent may also provide tests and ask questions to find

out whether the other agent(s) has obtained the information. (b)

Interview system: One agent has control and asks questions to ascer-

tain the state(s) of otl-r 1,,ent(s). (c) Message interchange system:

Participating agents share cout ro Il i I ;,i.:,ract with each other to

exchang, information. When interacting agents have no way to

prede.ermine the areas of expertise and ignorance -F 1i:her

shared-control message exchange becomes, important.

Each agent in an infornation system may he: (a) a person, (b) a

machine, (c) a codified agent (see Section 6), or (d) a complex organ-

izat ion.

The above classi FiVil i'k , ,,'io.nes provide a matrix of reference to

classify information systems.

(1) Dyadic system can he tutorial dyadic system, interview dyadic sys-

ten, or intercbhnge dyadic system.
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(2) Small group system can be panel di.-ussion group (tutorial), Del-

phi group (interview), or brain-storming gr,,up ( i:t-riige)

(3) Large group system can be public lecture group (tutorial, using

rhetoric techniques) or participatory democracy group (interview).

Large group system is essentially a one-way communicating system, with

limited feedback using polling and rating techniques. A "fire-side

chat", for example, is a large system tutorial camouflaged as a dyadic

interchange.

Curr, at man-machine information systems are either dyadic tutrl-

al systems (such as computer-aided instruction syst :ms) or dyadic

interview systems (such as information retrieval systems). This is

because for thse two types of systems, the control structure is sim-

ple (one agent has control), and the alien-model can be predefined.

Take the Eliza system as an example. This is a dyadic interview sys-

tern, with Eliza as the interviewer, and the human participant as the

interviewee. Since the alien-model for Eliza has Ieen taken for

granted (i.e. predefined) by the human particip.tio, Eliza passes as a

psychiatrist. The purpose or goal for Eliza is also taken for gr:ont-

ed. The conversation created by Eliza is not a true converr-aLion, III:

a pseudo-conversa tion.
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5. Misinformation and Information Distortion

Misinformation can be defined as the deliberate distortion of

information by an agent (Note 3). In a large system for one-way com--

munication, information distortto, is inevitable, because the system

must distort by selection. On the other hand, the receiving agent can

also distort a message because of its InformatLon bias.

There are two types of information bias: (a) bias of self--model,

and (b) bias of alien--model. A political leader may be regarded as a

saint by his own countrymen (bias of self-model), and a villain by

foreigners (bias of alien-model). Protocols can sometimes he used to

negate information bias of the underlying self--model or alion--model.

In many situatons for information exchange, the misrepresenta-

tion of information, or the sending of misinformation, is .11 ,, vtry

t:nportant . Misinformat ion can he exchanged (a) in bargaii n pr, .

1,ols, (b) as a tool in policy control, and (c) to avoid undesirable

consequences.

In bargaining protocols, to achieve some desi rable goal s or ob-

jeutives, agents may send false information, or tell lies. For exam--

ple, in "shopping protocol", the customer pretends not to buy, so as

to induce the seller to lower the price. The seller also pretends not

to seI 1, so as to Indut'e the buyer to raise the offering price.

Ml slInforn.i LI on is exchanged , In order to estimate the true alien-

models. Similarly, In international politics, foreign policy is often

meant to change othr a.get's model of oneself. However, inaccurate

al-en.-models may lead to misinterpretation of messages from alien

agents I SOLOM7T I.
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In policy control, the government can send carefully prepared

forecast about future outlook of economy to the public (households,

firms and banks, etc.) to induce the public to react in a certain way,

thereby achieving economic stability [TAM79]. For example, the Carter

administration proposed tax rebate on January 29, 1977. When the pub-

lic reacted favorably, resulting in less unemployment, the Carter

administration withdrew the tax rebate proposal on April 14, 1977.

This is another example of the usefulness of misinformation. Similar-

ly, in price control, government's inflation forecast will influence

the workers' union to change its price e±'pf!ctations and wage demands.

Misinformation is also often used to avoid! undesirable conse-

quences. In a success-oriented society, failures cannot be tolerated

without losing credibility. Misinformation is needed to induce

resource expenditures by other agents, to maintain an alien-model hav-

ing a "success image". Project and product promotion often wnrs ',i

.ay. The Edsel syndrome and the Pinto syndrome are good examples.

Vietnam War is yet another example of using misinformation to induce

further r,!lKe ependitures to transform "failure" to "success". On

a smaller scale, a professor may also use misinformation to induce a

student to contin,- Ph.D. research work, by telling him he is very

near to completion --- which may not be the truth.

In the model described in Section 2, the encoder and do . r-

form the conversion of true messages to external m,sages containing

misinformation, and conversely.

am, I ii _ .J.
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6. Codification Process

In an information system, not all interacting agents are active

agents. Some may be codified agents, such as books and motion pic-

tures.

Books can be regarded as information nodes in an information sys-

tem, with author as agent, author's mole,1 )f r:;ider as alien--model,

and author's knowledge as his data base (Note 4). The reader is the

alien agent communicating with the book as a codified agent. The

codification process (a) delimits and structures data, (b) determines

model of alien agent, and (c) determines mode of communication. The

mode of communication in this example, is tile reading of the book by

the reader.

Similarly, a motion picture can also be regarded as a codified

agent, with director as agent, director's conception of audience as

his alien-model, and director's knowledge as his data base. The audi--

ence becomes the alien agent, and the mode of commuication is the

watching of the motion picture hy the audience.

Therefore, the codification process converts a dyadic system to a

large group systi, wiLli one--way communication. The codified dyadic

system differs from a iargt; qystem in two respects: (a) A large system

generally operates by mes,;;igo hroidcasting. It is a time--synchronous

system. The codified dyadic system is a diachronic system (a book can

be read many tlimes, hy past, present or Future readers). (b) A large

system may allow some feedback and message interchange, whereas the

codified dyadic system does not allow any feedback.

An inforq.aion system may also become codified for an external
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observer. This codified system conveys new (and often unintended)

messages to the ohserver. Again, the characteristic of the codified

system is that only one-way comaiuaication is allowed, i.e. messages

are transmitted to the observer, but not conversely.
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7. Information Distance

In an information system, some intera t[ig agents exchange infor-

mation more often among themselves, although they may be geographical-

ly, structurally distant from one another. Examples of such sub-

groups include: sub-cultures, professional societies, cliques and peer

groups (Note 5). In addition to a measure of r;iL of information

transmission, there is a need to define a measure of information dis-

tance.

Let Mi and Mj be two communicating agents, Pij the pr.-hability of

Mi sending a message to 1j, and Pji the probability of Ij sending a

message to Mi. The skewed information distance from Mi to Mj,

ds(Mi,Mj), is defined to be I/Pij, and the skewed information distance

from Mj to Mi, ds(Mj,Mi), is defined to be I/Pji. The information

distance between 'Mi and Mj is defined to be d(Mi,Mj) = 1/(Pij x Pji),

or the product of the skewed infomnation distances ds(Mi,Mj) and

ds(Mj,Mi). The smallest information distance d(Mi, 11j) is 1. When

either Pij or Pji is 0, d(Ni, Mj) becomes infinity.

In Section A5 of the appendix, the formation of communicating

sub-group.-s that rflect the concept of information distance will he

discussed. A preliminary definition of infomnation distance between

two infomnation nodes is also presented in that section.



-L9-

8. Examples of Information Exchange Processe.;

In this section, we draw examples from various disciplines to

illustrate the information exchange processes.

In social psychology, dyadic so, [al ilotoraction can be modeled as

incremental information exchange between two agents [IIUESM76]. Each

agent has a number of psychological stateLs, iihirh l assumfed to be

linearly ordered from "shallow states" to "deep states". Message

spaces and payoff functions vary from state to state. An act ion pro-

tocol determines state transitions ---- message exchanges that are mutu-

ally beneficial can lead to transitions to deeper states, resulting in

deeper psychological involvement and more intimate relationships.

This model can be used to simulate various behavior patterns in social

psychology.

In transactional analysis i BFRNE73|, a tratisaction is :ief ined to

be a unit of dyadic social interaction of messa.;e ,"exchange between two

agents. The interaction is determined by interpersonal psyclological

state pairs. Each agent has a goal st.ite or final stat,, lie con--

ceives a sequence of state changes and message xc ha ,,es t. l1d to

s)11, .I. ,i.) Ia goal. state Tie messages ire then emode I to become

srF.i:,, messag e exchanges. In transactionna i an1l lysis, Lhe ;iln of tI

psychologist is to reverse the protS , ..- ,. to decod.' i uirf.ice message

exclangos to understand true l's .;1o inge an(esi true state

pa irs i11 me s;!;;ig;e exciai,,e . For example , a sIr face ex|change

may be interpreted as the interaction of one agent In "parent--state"

with another agent in "child--state".

In ,conomic theory, we have economic agents exchanging, messages



which are either price information or resource exchange information

[HAYEK451. The economic environlent defines the characteristics of an

agent: its preference relatli, initial endowment, and technology set.

The adjustment process then sp'ok[fles the message space for agents,

and the response rules (the adjustment ,necii [s.m) that the agent must

follow [H1UR1I59, CAMAC70]. One can then study problems such as

economic equilibrium, informational efficiency, and system perfonance

characteristics of a given economic environment savisfying certain

properties [TINBE671. One can also study the optimal prestructuring

of information ex(! nge i':)tocols for decision making [ALBINRI].

In the .hbve, we have given examples of information exchange

involving two or more active agents. The interacting agents may en-

gage in team work toward some common objective [IMARSC72, GROVE73], or

may be competitive and antagonistic to one another, as will he dis-

cussed in the appendix.



9. Discussion

This paper has presented fundamental concepts of information

exchange theory. It is hoped that the conceptual framework presented

in this paper may lead to systematic ways of understanding the infor-

mation exchange processes in complex organizations or social systems.

As an example, our understanding of a complex organization usually

combines several types of information exchange processes: (a) system-

level messages in the Fon of measurements of system state indicators

(number of employees of an organization, average salary, age and race

distribution, etc.); (b) dyadic message interchanges (interview of

individual members from an organization); (c) group interviews (pol-

ling and rating); (d) messages from t-,:o.Hfied agents or codified infor-

mation systems (books, reports, statement from employees' union,

etc.); and (e) tutorials (news broadcast, television news, etc.) (Note

6).

Information exchange process has two other intorki i.5 i ,

teristics: (a) Information exchange usually happens at several levels

simultaneously. Message exchange at one lev.l is usually interpreted

and acquires significance and meaning at a different level. This

multi-leveledi",-,, is apparent in many information exchange processes.

(b) Information exchange usually is multi-directional , witl intention-

al effects as well as unintentional side ,ffects. Information

transmission is often spontaneous --- although the i[i:mtracting, agents

may not intend to exchange information in a certain way, it happens

often to be the case. This again is due to the multi-level nature of

the information exchange process. It is also related to the codifica--

tion process discussed in Section 6. As a result, The efficacy and
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efficiency of an information exchange process can be evaluated in mul-

tiple ways, depending on the level of message exchange of interest,

and the direction of message exchange of interest.

In conclusion, the study of how differen7t types of information

exchange processes are combined, how such mesL1 1 in a

knowledge base, and how to perform multi-level, multi-directional

evaluation of the efficacy and efficiency of an information exchange

process, will be of interest for further investigation.
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Notes:

1. An information exchange system may utilize a telecommunication sys-
tem, or a trait';portation system, or a combination of both, to make

message exchange feasible. Computer information systems are also

utilized to facilitate information exchange, or to implement an infor-
mation exchange system.

2. Tho i root for communication, communico, means "to share".

3. "The lie is the specific evil which man has introduced into na-

ture", Martin Buber, Good and Evil, Scribner's, 1973, pp. 7.

4. "These are not books, lumps of lifeless paper, but minds alive on

the shelves. From ecich of them goes out its own voice, as inaudible
as the streams of sound conveyed day and night by electric waves
beyond the range of our physical hearing; and just as the touch of a

button on our set will fill the room with music, so by taking down one
of these volumes and opening it, one can call into range the f, r dL.-

tant voice in time and space, and hear it speaking to us, mind to

mind, heart to heart." Gilbert Highet

5. World-wide information system need not lead to universal conformi-

ty. It may also lead to deliberate nonconformity.

6. In dynamic social systems, information exchange processes also

exhibit time-dependent changes. For example, during the initial phase
of a political movement, there usually is a sudden increase in the

need to communicate anong participants (publication of pamphlets,
meetingg, public lectures, etc.). When synergy is achieved and the
participants ;Iiare similar self-models, alien-models and goals, the

need to communicate decreases. After the movement is institutional-

ized, the usual information exchange processes are reestablished.

low-
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Appendix: Competitive information Exchange

AI..Competitive Information Exchange Model

In what follows, we will describe a model for competitive infor-

mation exchange. Competitive Information exchange situations arise in

economic message exchanges and in game theory. In our model, each

agent Ili has a payoff function associated with exchanged messages as

follows:

xi Xj payoff

fi 0 1 al
1 0 a2
I 1 a3

where ai at -1, 0 or +1, and a0+al+a2+aJ=0. In dyadic competitive

message exchange, each ag ent will take turns in sending , messages to

the other agent, who then responds. In other words, ag~ent ':sends xi

to agent Jwho responds by sending back xJ. The pa yo ff to 11,i is

obtained from the payoff function fi. Conversely, IflJ nay also send xj

to Ili, who responds by sending-, back xj. The ag-ent with the highest

nccumulated payoff is the winner.

As an example, sagent 111 his the following payoff funfction:

xl x2 payoff
0 0 0

fl I I
1 0 -1
I 1 0

Similarly, agent 1'2 has the following payoff function:

x2 xl payoff
0 0 1

f2 0 1 -1
n
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If 1l sends 0 to 112, who responds by sendine back 0, then the

payoff to Ml is 0 (using payoff function fl), and the payoff to N2 is

1 (using payoff function f2). In other words, each agent uses his own

payoff function to calculate his payoff.

In general, each agent li knows only his payoff function fi --

i.e. ie has an accurate self-model. Therefore, each agent may attempt

to optimize his payoff by selecting appropriate action rules with

respect to his payoff function. A reasonable strategy is to send and

respond to messages by optimizing expected payoff.

DEFINITION 2: The optimal expected payoff rules for ,!i are:

(111.1) send 0 if aO+al > n2+a3 (expected payoff El is 0.5(aO-al) )
send I if aO+al < a2+a3 (expected payoff 171 is 0.5(a2+a3) )
send 0 or I if aO+al = a2+a3 (expected payoff EIl is O.S~aO+al)

(Mi.2) when receive 0, respond 0 if a a2 (expected paynff E2 is an)
respond I If an < a2 (expected payoff E? is a2)
respond 0 or I if aO = a2 (expected payoff T2 is aO)

(Mi.3) when receive 1, respond 0 if al > a3 (expected payoff E3 is al)

respond I if al < a3 (expected payoff E3 is a3)
respond 0 or 1 if al = a3 (expected payoff E3 Is al)

The overall expected payoff E is given by the expression:

(1) E = 0.5EI + 0.25E2 + 0.25E3
= 0.5 max(aO+al,a2+a3) +

0.25 max(aO,a2) +
0.25 rax(aI,a3)

For example, XI may select the followin,, action rules:

(.Il.l) send 0 (expected payoff r1=0.5)
(M1.2) when receive 0, respond 0 (expected payoff 12=fP)

('1.3) when receive 1, respond 0 (expected payoff 1.3=1)

and the overall expected payoff U = 0.5. on the other hand, IN 2 may

select the following action rules:

(?!2. 1) send 0 or I (expected payoff El =O)
(112.2) when receive 0, respond 0 or I (expected payoff "?=I)
(12.3) when receive 1, respond 0 or I (expected payoff I '=-I)
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and the overall expected payoff E 0. Such action rules will puaran-

tee that optimal expected accumulated payoff is obtained if the op-

ponent sends and responds to messages randomly.

DEFINITION 3: An agent who behaves according to the optiral expected

payoff rules is called an H1onest Oeorpe A5-ont (11CA).

It should be noted that the state space S of an HGA consists of a

single element (fj,fj,*), where fi is its self-model, and * is a spe-

cial symbol denoting- a randon opponent.

THEOREM 1: The expected overall payoff 1£ of an honest g-eor-,e agent

(HiGA) facing a randlom opponent is always nonnegative.

PROOF: There are only 19 different payoff functions (I with all O's,

12 with one 1, and 6 with two I's). Lle can enumerate those payoff

functions to prove that the expected overall payoff, i' (eqi. (1)) of

11CA is always nonnegative. V' nineteen payoff functions are listed

in Table Al:

function no. a10 at a2 a3

2 C) 0 0 0
3 1 -1 0 0
4 - 1 00
5 9) 0 1 -1
6 0 0 -1 1

10 -1 C, 0 1
11 () 1 -1 0
12 0 -1 1 0
13 1 0 -1 0
14 -1 0 1 0
15 0 -1 0 1
16 0 1 0 -1
17 1 1 -1 -1
18 -1 -1 1 1

Table Al Nineteen payoff functions



Alternatively, we can prove the above theorem analytically as

follows. First, we observe that El > 0. Suppose not, then from equ.

(1), there are two cases: (i) El= an +al <0. Since aO + al + a2 + a3

= 0, we have aO + al = -(a2 + a3) < 0, or a2 + a3 > 0 > aO + a!, im-

plying that El = a2 + a3 > 0, a contradiction. (ii) El = a2 + a3 <0.

Similar argument leads to a contradiction. NeXt, suppose that E <0.

From equ. (1), we have 0.5EI + 0.25E2 + 0.2513 <0. Since 1l > 0, we

must have F.2+E3 <0. There are two cases: (i) E2 <0. Fro:- Vpu. (1),

aO=a2= -I. Since aO+al+a2+a3=,, we must have al=a3=l, ard thus 13=1.

But then, E2+E3=O, a contradiction. (ii) 13 <0. Similar argument

leads to a contradiction. Therefore, E cannot be n gativo. O.F.D.

The above theorem says that the expected payoff for an IlCA

against any opponent is always nonnegative, (Honest Cor!,c i; basical-

ly an optiministic fellow!) and the optimal expected payoff i; actual-

ly attained, if the opponent is a random agent (which is equivalent to

an HIGA with payoff ai's identically zero).

When both MI and M2 in the above example are hionest Ceories, then

their message exchanges are determined by the optiral exlpected payoff

rules. For the above example, the exchanpes ire: (a) !I sends 0, and

M2 responds with 0 or 1; (b) M2 sends 0 or 1, and III responds with 0.

Therefore, their respective payoffs can be tabulated as follows:

NI-send=l ,'?-rPsponse=O -t-payoff= 0 -2-payoff= 1

VI -send=0 P2-respnnse=I I-payoff- I ?12-payoff= I
P12-send=0 ;I1-response=n I-payoff- 0 P2-pnyoff= I

P2-send=I ?II-response-0 M-payoff= 1 2-payoff= I

tII-average-payoff=0. 5 :2-averare-payoff =I

It is seen that both I and -2 have positiVe average payoffs, and
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1'2 is the winner.

On the other hand, if an agent lii has acquired knowledge concern-

ing the payoff function fj of his opponent agent Vj, i.e., lie has an

accurate alien model, then hie can attempt to optimize his performance

by selecting appropriate action rules with resrect to both payoff

functions fi and fj -- i.e. hie has both a self-model and an alien

model. Plis action rule (both for sending and responding to miessages)

is such that the expected value of the difference of his payoff and

his opponent's payoff is maximized.

DEFINITION 4: An agent who takes advantage of hits knowled-e of op-

ponent agent's payoff function and possible action rules, is called a

Tricky Dick Ain (TDA).

The state space of a TDA also consists of a sin:gle element

(fi,fi,fj), where fi is its self-model, and fQ is its alien m~odel.

For example, if MI is [ICA, and 1'2 is TDA, then their respective

payoffs can be tabulated as follows:

111-send=0 rT2-response=0 'T-payoff= (1 :12-payoff= I
112-send=0 '1l-response=0 M!1-payoff= () 112-pnyoff= I

1!I-averige-payoff=0 !12-average-payoff=1

If MI is T~IM, and 1M2 is lICA, then their respective payoffs can be

tabulated as follows:

V I-send = I ?f2-response=0 'I-payoff= -1 ',2-payoff= -1
MI-send=l 112-response=l M1-payoff= (1 112-payoff= -1
V2-send=O f-response=l !HI-payoff- -1 tH2-pavloff= -1
?2-send-1 III-response-I '.1-payoff= 0 X.2-payoff- -1

1,11-average-payoff- -0.5 M2-average-payoff- -1

From the above example, we have the followig theorpm:



THEOPE" 2: A tricky Dick Ili can win over an honest George rij, even if

the honest George Mi loses to the honest George nj. In other words,

it pays to play tricky. To put it in another way, honesty is not the

best policy!!

Finally, if both Ill and 12 are tricky Dick, then their respective

payoffs can be tabulated as follows:

NI-send=l 1!2-response=O rI-payoff= -1 V2-payoff= -1
112-send=O Il-response=l 11l-payoff= -1 112-payoff= -1

Nl-average-payoff= -1 V2-average-payoff= -1

The above example illustrates that when both sides play dirty,

they may square off. flowever, it is also true that they both loses in

absolute terms! There is a moral in this example -- live and let live!

This is similar to the "prisoner's dilemma" in econortics theory.

In a simulation experiment, programs were written to simulate (a)

the behavior of 110A, and (b) the behavior of TPA who has perfect

knowledge about his opponent's payoff function. All tournament combi-

nations of PCA against 110A, FCA against TDA, and TPA a,,ainst TDA,

using the nineteen different payoff functions, are tried. The results

are summarized in Figures Al(a)-(d).

Some general remarks concerning the tournament results can now be

stated. From Figtre Al, it can be seen that the average payoffs in-

crease according to the payoff functions: some payoff functions (name-

ly, #0 and #1) always yield lowest average payoffs, and sore other

payoff functions (namely, /#17 and #18) always yield highest average

payoffs. It is also clear that TDAs generally have advantage over

ICAs, because they have information on opponent's payoff functions.

However, a more detailed analysis shows the limitations of TAs.

mom[



As an example, we take payoff function #;6, with a0=0, al-0,

a2--1, a3-1, and list its tournament results in Table A2:

tournament average payoff prob to win P1 prob to draw P2 PI+P2

HGA#6 vs HGAs 0.25 0.263 0.3(8 0.631
IICA#6 vs TDAs -0.132 0.053 0.263 0.316

TDA#6 vs HGAs 0.11R 0.421 0.316 0.737

TDA#6 vs TDAs -0.263 0.211 0.316 0.527

Table A2 Tournament results for Agent #6

It can be seen that IIGA#6 wins or draws with probability 0.631

vs. HGAs, and that probability decreases to 0.316 vs. TDAs. Its

average payoff also decreases from 0.25 to -0.132. On the other hand,

TDA#6 wins or draws with probability 0.737 vs. IICAs, and that proba-

bility decreases to 0.527 vs. TDAs. Its average payoff also de-

creases from 0.11P to -0.263. Therefore, we can conclude that if an

agent acts as a TDA instead of an 110A, le may win or draw more often,

but his average payoff may decrease. The same conclusion can be

drawn, by looking at the average (over all payoff functions) of the

above values, as shown in Table A3:

tournament average payoff prob to win P1 prob to draw P2 PI+P2
an ICA vs IlCAs 0.421 0.338 0.305 0.643
an BICA vs TPAs 0.116 0.211 0.313 0.524
a TDA vs lIAs 0.305 0.476 0.477 0.953
a TDA vs TDAs 0.0 0.338 0.324 0.662

Table A3 Average turnament results

Some other remarks are in order: (1) a TDA facing a random op-

ponent Is indtstinguishable from an IICA with same payoff function; (2)

an 11CA never wins with negative payoff, although some TDA does; (3) an

IICA always draws with itself, a TDA will also draw with itself but may

do so with average payoff -1; (4) the HCA with payoff function

(0,0,0,0) is the random agent. It never wins, nlthough the TDA with

same payoff function may win; (5) if 1BOA with payoff function ft wins

I1
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over TDA with payoff function f2, then the same IICA will also win over

d IICA with payoff function f2; (6) the only aents (honest or tricky)

that never win over any tricky agent, are those with payoff functions

#0(I,-lI,-I), #I(-l,1,-1,l), and #2(0,0,0,0). As a matter of fact,

the IGAs with these three payoff functions have similar behavior; (7)

An ICA may win over a TDA. ror example, lIGA with payoff function

#17(1,1,-1,-l) can win over any TDA.

A2. Estimation of Alien-Model of HCA

The next problem we wish to investigate is the estimation of

payoff functions or estimation of alien-models. A tricky Dick Ms

would like to know the payoff function (or alien agent's state) of his

opponent Va. Suppose the opponent's payoff function fa=(aO,al,a2,a3)

is not directly observable. The TDA may try to estimate fa by observ-

ing the opponent's message sending/responding behavior.

For a TDA to estimate the payoff function of his opponent (assum-

ing it is known that his opponent is an IICA), he must waste some of

his moves to gain information regardinp the behavior of his opponent.

Specifically, he must examine what his opponent is sending him and

what his opponent is responding when he sends messages to his op-

ponent. It is clear that by examining a sequence of ries.;ages sent

back and forth, the TDA will be able to categorize his opponent into

one of several classes; and then for the remainder of the interaction

the TDA can react according to the class of the payoff functions rath-

er than to an individual payoff function.

Using Definition 2, the payoff functions of an IICA can be divided

WMM -
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into nine classes. For each class, the external behavior of the lIGA

is the same.

CLASS A: aO+al>a2+a3, aO>a2, al>a3
#17(1,1,-l,-I), #9(1,0,0,-1), #11l(0,1,-1,0)

CLASS B: aO+al>a2+a3, aO>a2, al-a3
#:13(1 ,0, 1 0)

CLASS C: aO+al>a2+a3, aO=a2, al>a3

#1 6(0, 1,0,-I)

CLASS D: aO+alfa2+a3, aOfa2, al=a3
#0(I -I, ,-I , #l -l~,-l l),#2(0,0,0,0)

CLASS E: aO+al=a2+a3, aO>a2, al<a3

#3(C,-1,0,0) , #7(1,-1,-1), #/6(0,0,-i, 1)

CLASS F: aO+al=a2+a3, a0<a2, al>a3
#5(0,0, I,-I), #8(-l,l,1,-1) , #4(-.1,1,0,0)

CLASS 1: aO+al<a2+a3, a0<a2, aI<a3

CLASS II: aO+al<a2+a3, aO=a2, a1<a3

#15(0,-I,0, 1)

CLASS 1: aO+al<a2+a3, aO<a2, alfa3

#14(-1,0, 1,0)

THEOREM 3: Given only the external behavior of an IHGA, it is impossi-

ble to correctly estimate its payoff function.

Therefore, the TDA can only estimate his opponent's class of

payoff functions. However, if the TDA can also observe the current

winner, then he can further pinpoint the opponent's payoff function

into a smaller class.

In most cases, the categorization of the opponent's class of

payoff functions is not sufficient in determining the action rules for

a TDA. One way to formulate the action rules for the TDA would be to

assume that, given a class of payoff functions, the opponent will

always be using the best possible payoff function in hat class. In



other words, the TDA will be reacting to the worst case. This TDA

will be somewhat limited in its power, and his advantage over an UICA

is therefore lessened.

A3. Estimation of Alien-Todel of TDA

Similarly, if the opponent is a TDA, its class of payoff func-

tions can also be estimated. Suppose the self TDA Ils has payoff func-

tion (sO,sl,s2,s3), and the alien TDA Va has payoff function

(aO,al,a2,a3). The following relations can be deduced:

(1) If TDA Ia sends 0, then ((aO+al) - (sO+s2)) ? ((a2+a3) -

(sl+s3)), or ((aO-a2) + (al-a3)) ((sO-sl) + (s2-s3)).

(2) If TVA Ha sends 1, then ((a2+a3) - (sl+s3)) > ((aO+al)-

(sO+s2)), or ((aO-a2) + (al-a3)) < ((sO-sl) + (s2-s3)).

(3) If NIs sends 0 and TDA ',a responds with 0, then aO-sO > a2-si, or

aO-a2 >, sO-sl.

(4) If "s znds 0 and TDA ITa responds with 1, then aO-a2 < sO-sl.

(5) If Hs sends I and TDA Ila responds with n, then nl-F2 > a3-s3, or

al-a3 > s2-s3.

(6) If I's sends I and TDA '1a responds with 1, then al-a3 < s2-s3.

From the above relations, the payoff functions of TDA can again

be divided into 8 classes:

CLASS a: aO-a2<sO-sl, al-a3<s2-s3, ((aO-a2)+(al-a3))<((sP-sl)+(s2-s3))PO0, #1, 172, #Rl, #10, #12, 014, #15, 411S

CLASS b: aO-a2=sO-sl, al-a3<s2-s3, ((aO-a2)+(al-a3))<((s-sl)+(s2-s3))#3, 
#E

CLASS c: aO-a2<sO-sI, al-a3>s2-s3, ((aO-a2)+(al-a3))<((sO-sl)+(s2-s3))
('7

CLASS d: aO-a2>sO-sl, al-a3>s2-s3, ((aO-a2)+(a1-a3))>((PO-sl)+(s2-s3))
111 7

CLASS e: aO-a2=sO-sl, al-a3=s2-s3, ((aO-a2)+(al-a3))=((so-sl)+(s2-s3))
#19, #11
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CLASS f: aO-a2<sO-sI, al-a3>s2-s3, ((aO-a2)+(al-a3))((s-sl)+(s2-s3))
#I f

CLASS g: aO-a2>sO-sl, al-a3<s2-s3, ((aO-a2)+(al-a3))=((s0-sl)+(s2-s3))
#13

CLASS h: aO-a2<sO-sl, al-a3=s2-s3, ((aO-a2)+(al-a3))<((sO-sl)+(s2-s3))

#4, #5

A4. Sophisticated IICA and TDA

In this section, we investigate the use of risinformation in our

model. In other words, messapes will be encoded by an encoder, before

being sent to the opponent. The opponent will use a decoded to Jecode

the incoming messages, before responding to them. We define a sophis-

ticated HCA (SHCA), which sends messages not entirely according to his

optimal expected payoff rules, and a sophisticated TDA (STDA), which

estimates the payoff function of his opponent SHCA and sends r-essages

according to his estimation of opponent's payoff function class.

SZ1CA sends messages accord in, to optimal expected payoff rules

with probability (l-p), and not accordin, to optirial expctvd payoff

rules with probability p. If O < p <0.5, SKCA sends riore "rihht" mes-

sages. If p = 0.5, his messages are random. If 0.5 < p . 1.0, he

sends more "wrong" messages than "right" messages.

STPA observes the action of SIICA for a sufficiently Ion, time.

In response to STD)A's message 0, if SHICA sends rore 0's than I's, then

STDA concludes that .0>a2; If SIWA sends as many O's an I's, then STDA

concludes that aO=a2; otherwise he concludes that aO < a2. In this

manner, STDA can estimate to which class his opponent's payoff func-

tion belongs.

In other words, STDA assumes that the probability 1p with which

9!



S11GA sends wrong mesages is less than or equal to 0.5. Since STDA

does not know p, it is natural that he assumes that his opponent will

send more right messages than wrong ones.

Therefore, if 0 < p < 0.5, STDA can correctly estimate the class

of opponent's payoff function. If p = 0.5, STDA regards his

opponent's payoff function to be in Class D. If 0.5 < p *< 1.0, STDA

cannot correctly estimate the class. For example, functions belonging

to Class A are regarded to be in Class C, and the conditions are in-

terpreted to be their opposites. Similarly, classes F and F, P, and I,

C and 11, are naturally confused.

Table A4 illustrates the average probabilities of SI]CA and STDA

to win or draw over all possible cases, for some fixed values of p.

(The results are averaed over all payoff functions in a function

class estimated by STDA.) The results are also depicted In Figure A2.

Some general conclusions can now be drawn.

Probability To Win Or Draw
p S 1CA ST DA

0.0 0.682 0.79
0.2 0.44F 0.684
0.4 0.344 0.78S
0.49 0.323 0.809
0.5 0.540 0.810
0.51 n.417 0.711
0,6 0.404 0.724
0.8 0.354 0.775

1.0 0.347 0.787

Table A4 Probabilities of SHICA and STDA to win or draw

1ien p is 0, STPA knows only the class to which SI:CA's payoff

function belongs, and his strate'gy of maximizing the expected value of

difference of their respective payoffs does riot always succeed.

Instead, SIA always sends messages maximizing his expected payoff.
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So in this case, SItCA (who wins or draws with prohabi l itv 0. ($6) is

actually stronger than STDA (who wins or draws with probability

0. 679).

As p increases toward 0.5, STDA gets stronger, and S!HCA gets

weaker, because the situation concerning STDA remains the same, but

SHGCA no longer always sends messages maximizing his expected payoff.

In particular, when p = 0.49, STDA wins or draws with probability

0.809, and that for S1ICA becomes 0.323.

Mhen p reaches 0.5, SIHCA becomes the random opponent. Beyond

this point, S!1GA sends more wrong messages than right messages. But

as the STDA assumes his opponent's payoff function to be in the oppo-

site class, his strategy to maximize the difference of their payoffs

also hardly succeeds. No general conclusion can be drawn, except that

STDA is stronger than SIICA when p is larger than 0.5. It should be

noted, however, that MICA is stronger when he always sends wrong mes-

sages (at p=l.O, ie wins or draws with probability ('.347), than when

he sometimes sends wrong messages (at p=0. 4 , he ,ins or draws with

probability 0.344).

A5. N-Agent Nessage rxchange

We can now define n-agent competitive information exchanpe. Sup-

pose there are agents 1I-, M2, ... , !!n. Each agent 'II will take turns

in selecting another agent 1*j, and send him a message, who must then

respond. In other words, agents sent (and respond to) messages in

round-robin fashion. Some agents ray want to becore cooperating

agents, because they have complementary payoff functions. ror exam-

ple, if 11 likes to receive more 0's, and V2 likes. to receive more



l' then' thCY can COop)Ira1tV, idai eah!t.aoda to 'i.Ti-fr

the action rules of an a:,cnt neeud to incliule ruba, to seleCt (over a

period of interact ions) those agents that are coopernt i n! uiLl, h i-..

A co-mputer pr o,,ra ;'.~a-s writn to ::iviulatt :;'o iniforrmation

exchange -liN 7 I Te pro;earn si mu lat es P) '%W O nico ithI

one another, eachi agent havingj a different pmyoff fictjon. T.riles

are used in round-robin message exchange. Fuc I c :A n -i:ecnt will

sel ect those opponunts whio will give h m onitive average a'.'ff! to

conmunicaite with. ".nle 2: !A aiocot w:ill declinv to c o:inio1) c .'c . w.ith

th Iose opyponents who iAll I I~ h, e im negat ive a Vera ;,e :,Zyoffl.

In the beginning- of the s imutlat ion experiprent, ta;C!;;:1 (itI wi~l.

corarunic t e with all other agets *; After a pp 1y in,, Pule I , it i, iiet ed

that average, payoffs; of Trost a'.ents (Io ;!ino..- n i nre';;4 V '. the

appT'icAt ion Of Tiile 2, in zidd it ion to increa,-se of payof:; i oted

that cli qkes hanvo been f orrued! Unje! 10 s ayoff ncmt ions :ii-. c hon :.er1 , a

ief finite r e .;sag1,0e % cli up i: pat tern i n*ong, t Ie v;' ri r t r i c ipatL in,,

agents have been formed. Thlerefore, 11' we repa rd t! o Cs achange,

pattern as a g!raph, we can define the inferi ation H!;atwc TOI'I tw;:0 two

inforrmation noee in) an inforviat ion sy!;tori is the F:a:rt et ath f ro:.

onc infortot. ion node to iwothor inforl-it ion nole, %.Iicre tcn art'

bet wre(,n two adjIacent in for::i t ion nodle! i q the i n f o . i oai d 1:; tice

i'etween L"tsetwoap t;;, a; dcfinjoe in Sect Jon 7. T f nio ,'11 !i:; cl ist

thevn t10 i nformat ion I! !;tincc lntwe'en two 1 if orv~it ivi nvodc:, is; i nf ini-

ty.



The information distance matrix A for the nineteen [ICAs is illus-

trated below, where an asterisk indicates an infinite information dis-

tance.

I 31 2 1 2 1 2 2 1 1 2 1 2 2 3 2 1
I*312121211221213212

S1212222 1 1221211221
*212121222 1 12212112

2 122122212122 111

1 222122212122213 11

A= * 222 221 221223211I
*21122122121223121

2 1 2 2 122 2 312 2 2 13211

A 122112221212121212
"21 12 2 2 122 12 2 1 22 3 211

* 122212211211111211

j*211121122122112111
*'231213322312122322
1*322131 233221213222

*21211111 1212112212

* 1 2121111212111222 

It is noted that l0A #0(1,-I,I,-I) does not communicate with any

other agent. If we define a k-clique as a set of nodes in which the

information distance between any two nodes Is no greater than k, then

IIGAs #1, #3, #18 form a 1-clique, HGAs #2, i'10, #16 form a 2-clique,

and all the IIGAs, excluding #0, form a 3-clique, etc. Disregarding

HGA #0, the average information distance is 1.617. The average infor-

mation distance for IUGA #16 to other HGAs excluding #0 is 2.055, which

is the maximum; and for ILCA #13 is 1.388, which is the minimum.

i..



-40-

Figure I Figure 2

Figure 3
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